

A stakeholder view on fair and equitable exchange of AnGR: a research perspective

Jianlin Han¹ and Paolo Ajmone-Marsan²

¹ILRI and Chinese Academy of Agricultural Sciences, Beijing, China

²Università Cattolica del S. Cuore and BioDNA Research Center, Piacenza, Italy

International Technical Expert Workshop on exploring the need for specific measures for access and benefit sharing of animal genetic resources for food and agriculture 7-10 December 2010, Wageningen, Netherlands

Importance and Access to AnGR

- Domestication of livestock and further development of AnGR contribute significantly to the civilizations of human societies;
- Ways to access to AnGR: commercial trading (e.g. dairy and egg-layer & broiler breeds), formal exchange often involved in indigenous breeds from south to north (e.g. gifted unique animals and birds), smuggling, etc...
 - Advantages and benefits from the 'easy' access to AnGR of commercial breeds and lines development of improved breeds with good local adaptations, breed replacements wherever the local conditions fit, and terminal-crosses with local breeds leading to a dramatic increase of livestock production, particularly in southeast Asia over past 30 years;

Current knowledge and challenge on genetic characterization of AnGR

- Advantages of a global view on biodiversity distribution pattern of AnGR at phenotypic and DNA structural variations, possibly also proteomics, epigenetics;
- Exchange of data, phenotypes, DNA samples, knowledge, management practice of production systems etc.;
- Centralised collection of research materials, e.g. DNA samples, databases;
- However, a significant fragmentation of research on biodiversity of AnGR.

Fragmentation of research on AnGR

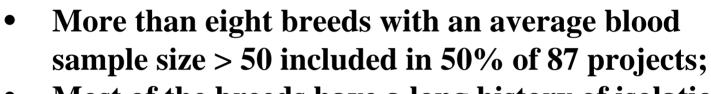
A few of continental scale projects

– regional and global collaboration

Europe (EU projects)

Africa (ILRI projects)

Asia (ILRI and FAO/IAEA projects)


Most of the biodiversity studies included samples within a continent, only a few of them across continents (e.g. ILRI projects, EU Pigbiodiv2, AVIANDIV)

However, never a global view for any major species!

Fragmentation of research on AnGR (Baumung et al., 2004)

- Most of the breeds have a long history of isolation, unique phenotypic qualities or an evolution within a unique environment;
- Small ruminants were investigated in the majority of projects;
- The most preferred markers are microsatellites, but the ISAG/FAO recommended loci were adopted very differently between species and projects with the highest acceptance in pig but the lowest in chicken.

Fragmentation of research on AnGR - an example from cattle microsatellites

																										_
Reference	1-6	7	8-12	13	14-17	18	19	20	21	22	23	24	25	26	27	28, 29	30	31	32	33	34	35	36	37	38	39
Number of markers	30	33	26	22	20	23	18	18	21	16	15	19	22	30	20	16	12	11	12	9	39	15	15	4	12	21
Number of breeds	97	5	20	5	38	7	3	4	5	12	5	28	2	30	4	12	1	3	3	10	6	50	4	26	34	4
Europe																										
Asia																										
Africa																										
Amerika																										
Marker																										
INRA63																										
INRA5																										
ETH225																										
ILSTS5																	$oxed{oxed}$									
HEL5																										
HEL1																										
INRA35																										
ETH152																	\perp									
INRA23																	\Box									$oxed{oxed}$
ETH10																										
HEL9																	\perp									
CSSM66																										
INRA32																										
ETH3																										

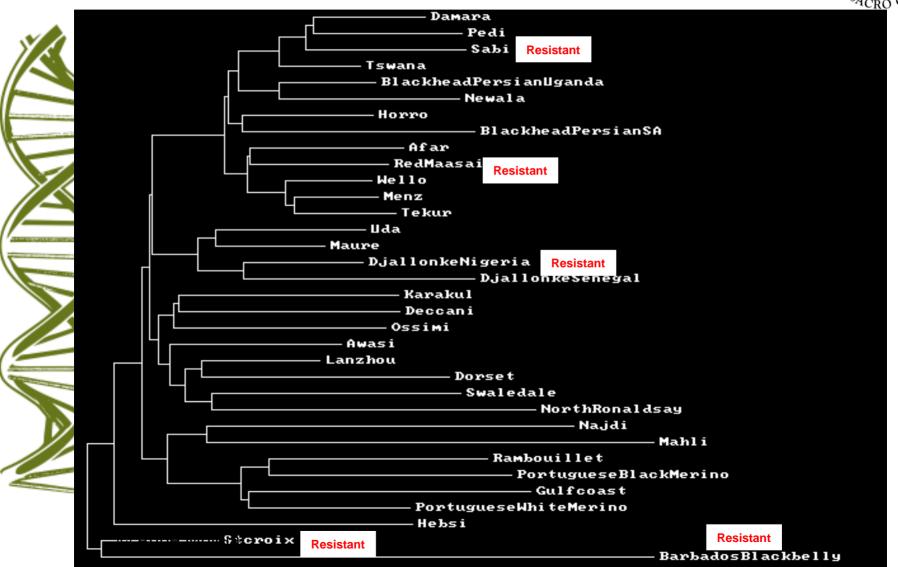
Fragmentation

						\mathbf{C}								
INRA ĸ														
INRA016														
INRA072														
DRBP1														П
HEL10														П
ILST2														П
ILST30														П
ILST33														Т
MM-8														Т
ILST011														Т
ILST034														Т
ILST054														Т
ILST73														П
URB58														T
BM1314														Т
BM203														Т
BL42														Т
ILST8														Т
RM12														Т
MGTM7				Γ					Γ					Τ
AGLA13														Т
AGLA226														
AGLA233														

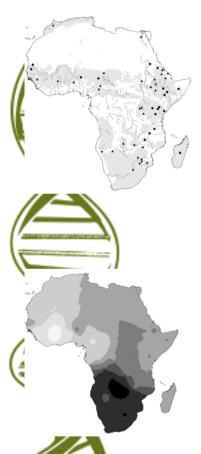
Advantages of a global view on biodiversity of AnGR

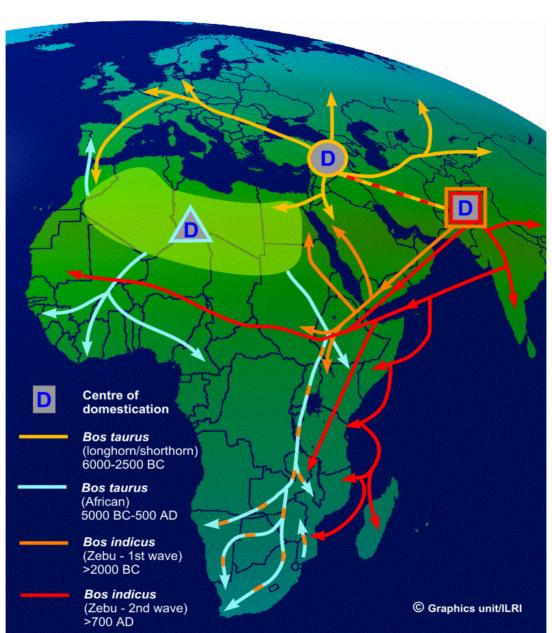
- Deep understanding of the origin, route of dispersal and distribution pattern of the biodiversity (geographic centers of domestications and subsequent dispersal routes);
- Identification of biodiversity hotspots and distinctiveness on a global scale for an improved and sustainable utilization strategy of AnGR;
- Identification of synonymous but non-identical or identical but non-synonymous breeds to rationalize and optimize the efforts and allocation of resources to conserve the maximum global biodiversity of AnGR.

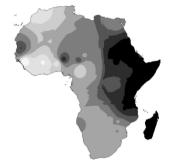
Advantages of a global view on biodiversity of AnGR

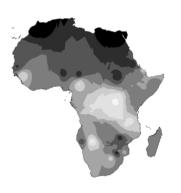

Also complementarity to:

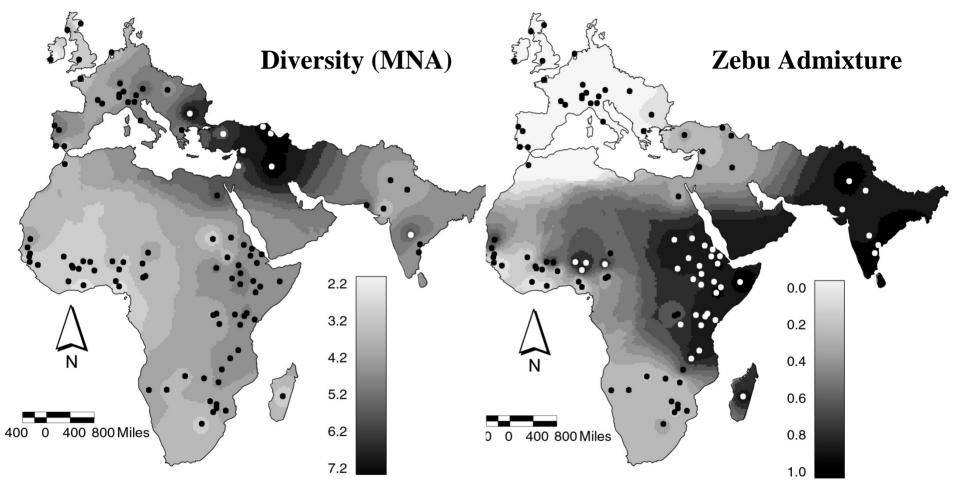
- •Breeds sharing similar traits (e.g. resistance to same disease) in different genetic background might have evolved different and complementary genetic resistant mechanisms;
- •Parallel investigation of breeds in different agroclimatic regions facilitates the investigation of the genetic basis of adaptation (key traits in a time of rapid climat change);
- •Selection signatures?
- •Across breed genetic evaluation and genomic selection?


Sheep helminth resistance




Origin and migration routes of domestic cattle in Africa





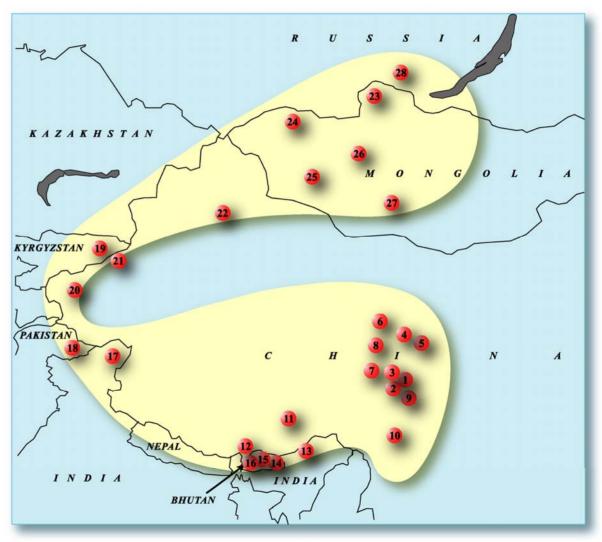
Livestock genetic diversity hotspots

Yak genetic characterization

Sampling

Country = 7

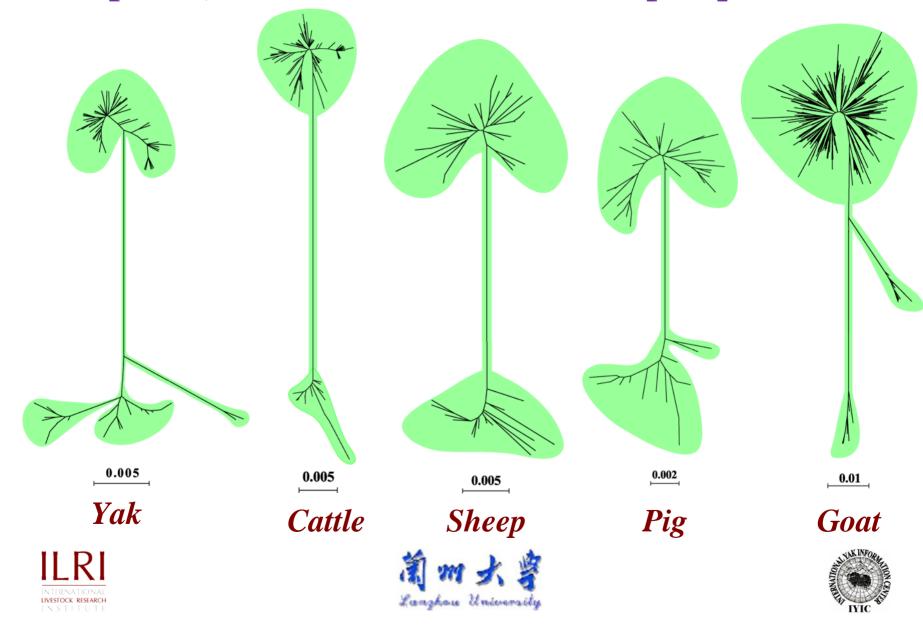
Populations = 28


Individuals = 1051

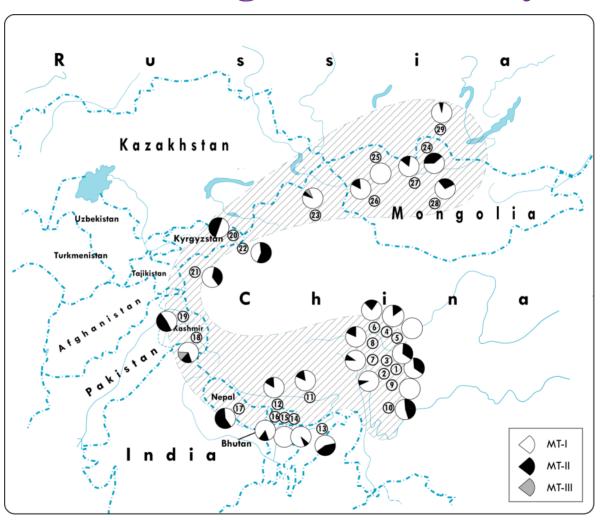
mtDNA sequencing

MS markers

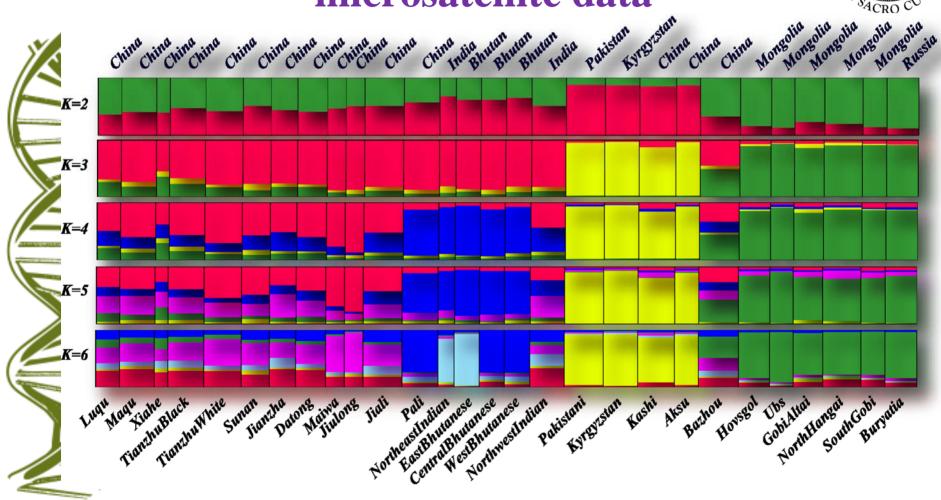
17 cattle-derived autosomal MS markers



Comparison of phylogenies of yak with other livestock species, uncorrected mtDNA D-loop sequences



Maternal origin of domestic yak

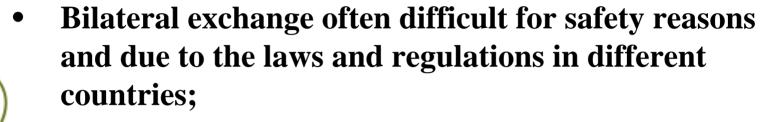


Phylogeographic analysis of diversity support a single ancestral admixed population of origin for domestic yak.

Population structure of domestic yak

microsatellite data

Requirements to facilitate data exchange

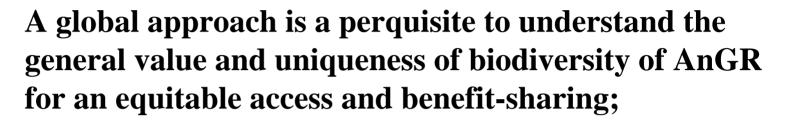


- A public reference marker dataset that includes genotyping scores of standard animals and of reference industrial breeds with easy assess;
- A shared, validated, and unbiased marker set;
- An international standard nomenclature of genotyping data;
- An international standard for data storage format;
- A common database to deposit data and make them available after publications (as now happens with sequencing data),

Centralized collection of research materials

- International repository (genebank) of DNA/gametes/ cells/tissues serving both conservation and research would be ideal;
- Definition of the terms of conditions for equitable access and exchange of data and materials to preserve rights following standard MTAs;
- Appropriate recognition of the origin of DNA samples and information and also personal contribution to publications, e.g. authorship.

New "-omics" for collaborative research and benefit sharing



- New technologies is promoting a new modle of collaborative research (outsourcing in advanced countries or commerical companies);
- Highthroughput platforms for genotyping large number of SNPs or targeted re-sequencing of individual genomes (standard definitions for scoring alleles of SNPs with and between different platforms and for selection and coverage of the genome regions);
- Capacity building for young generation scientists in developing countries so that to build deeper trust based on a better understanding of the collabotive research.

Conclusions

Though some regional and international efforts have been undertaken, e.g. the ongoing attempts on meta-analysis for ruminants and chickens, an open access to and exchange of data and research materials following standard MTAs and based on the full recognitions of the origin of information & samples and also personal contribution to publications is a must for effective collaborative research on AnGR;

Conclusions

- New "-omics" research tools facilitate and encourage more opportunities for collaborative research but effective training of young scientists and minimum infrastructure support in developing countries needs to be strengthened to build trusts among future generations;
- Prompting collaborative research leading to more efficient production systems with a reduced imprint of livestock;
- Strengthening north-south collaborative research with double objectives of improving local breeds and valuating AnGR.

