

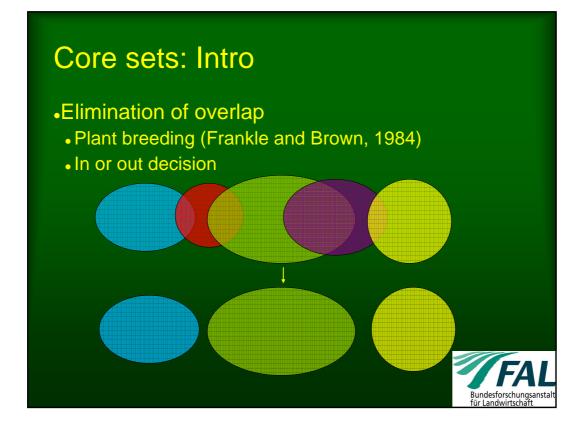
Institutsratsitzung 10 November, 2006

Slide 1

Identifying unique national genetic resources in an international setting *Herwin Eding*

Introduction

- •Benchmark sets
 - •Safe set analysis
 - •Core set diversity
 - •Mean kinships between and within populations
 - Estimated from marker genes


Core sets: Intro

•Elimination of overlap

- Plant breeding (Frankle and Brown, 1984)
- In or out decision

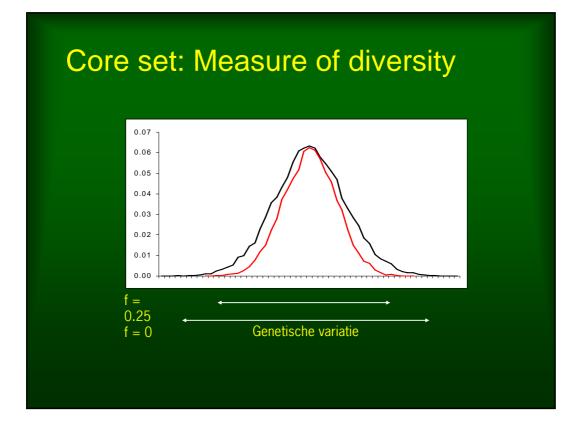
Core sets: Measure of diversity

•Elimination of overlap •What overlap?

> **FAL** Bundesforschungsanstalt für Landwirtschaft

Core sets: Measure of diversity

- Elimination of overlap
 - What overlap?
- Mean kinship between populations
 - Kinship is defined as P(allele X=allele Y) = f
 - Full sibs, parent offspring: f = 0.25



Core sets: Measure of diversity

•Elimination of overlap •What overlap?

- Mean kinship between populations
 - Kinship is defined as P(allele X=allele Y) = f
 Full sibs, parent offspring: f = 0.25
 - But also $var(Gt) = var(Go) \times (1 f)$
 - Falconer and MacKay, 1996

Core sets : Measure of diversity

Kinships

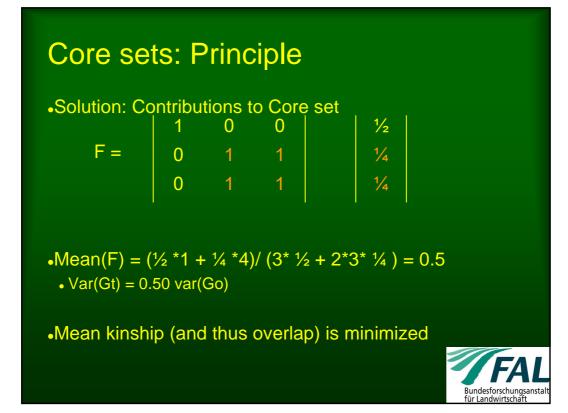
- Common alleles
- Decrease in genetic variance

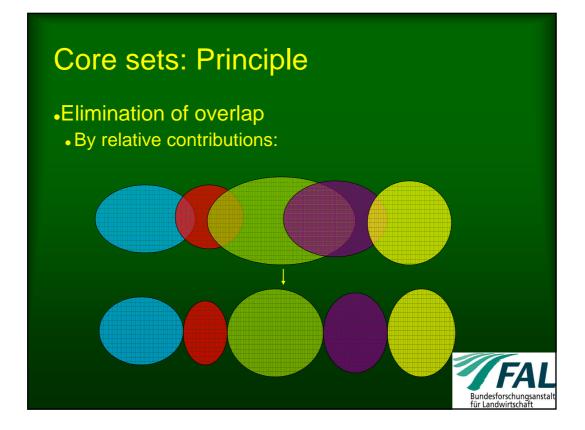
Core sets : Measure of diversity

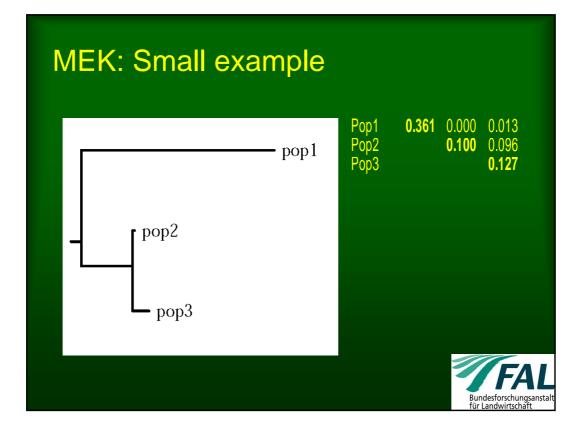
Kinships

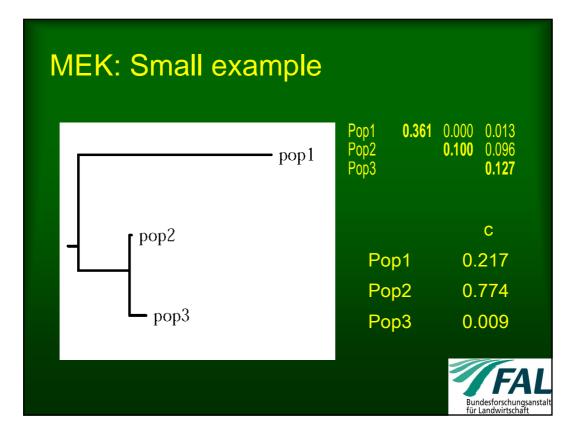
- Common alleles
- Decrease in genetic variance

Minimizing Kinship


- Minimizing overlap
- Maximizing genetic variance




Core sets: Principle.suppose: $F = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.Mean(F) = 5/9 = 0.55.Var(Gt) = 0.45 var(Go)


Core sets: Principle.suppose: $f = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.fean(F) = 5/9 = 0.55.var(Gt) = 0.45 var(Go)

Core se	ts: F	Princ	iple	
•Suppose:	1.		-	
	1	0	0	
F =	1 0 0	1	1	
	0	1	1	
 Mean(F) = 5 Var(Gt) = 0. Elimination Var(Gt) = 0. 	5/9 = 0 45 var(of (3):	.55 Go) Mean	(F) = 2	Bundesforschungsanstalt

Core set: Conclusions

- Largest contributions
 - Populations with the least drift
 - Closest to original ancestors
 - Least number of extinct alleles
- Small contributions
 - High levels of drift/inbreeding
 - Sub population of larger population
- Core set tries to conserve founder variance

Illustrations: National vs. International

- Mateus et al., 2004: Portuguese cattle
 - 11 indigenous breeds
 - Alentejana, Arouquesa, Barrosa, Barva de lide, Cachena, Garvonesa, Marinhoa, Maronesa, Mertolenga, Minhota, Mirandesa
 - 4 exotics
 - Charolais (USA), Charolais (PT), Limousin, Holstein Friesian

Analysis

- Core set Portugueze indigenous breeds only
- Core set including exotics
- Safe set analysis; Exotics as Safe set

Illustrations: National vs. International

Core sets

Porto
0.238
0.220
0.027
0.136
0.000
0.000
0.146
0.000
0.152
0.023

Mateus et al. (2004), Anim. Genet.

Illustrations: National vs. International

		Core sets	
	Porto	Incl. exotics	
Mertolenga	0.238	0.310	
Cachena	0.220	0.215	
Arouquesa	0.027	0.034	
Maronesa	0.136	0.136	
Marinhao	0.000	0.008	
Barrosa	0.000	0.000	
Garvonesa	0.146	0.131	
Alentejana	0.000	0.000	
Mirandesa	0.023	0.053	

Mateus et al. (2004), Anim. Genet.

Safe sets and benchmarks

- Safe set analysis
 - Construct a set of resources that are 'safe'
 - No immediate risk of extinction
 - Widely used
 - Add breed *i* to the Safe set
 - Calculate contributions to Div(s+i)
- Reranking relative to whole set analysis

Illustrations: National vs. International

		Core sets			
	Porto	Incl. exotics	<mark>S + </mark>	AD(<i>i</i>)	
Mertolenga	0.238	0.310	0.463	0.021	
Cachena	0.220	0.215	0.399	0.018	
Arouquesa	0.027	0.034	0.392	0.014	
Maronesa	0.136	0.136	0.329	0.014	
Marinhao	0.000	0.008	0.319	0.013	
Barrosa	0.000	0.000	0.283	0.012	
Alentejana	0.000	0.000	0.261	0.011	
Mirandesa	0.023	0.053	0.190	0.009	
Brava de lide	0.059	0.003	0.174	0.006	

Mateus et al. (2004), Anim. Genet.

Illustrations: National vs. International

		Core sets		
	Porto	Incl. exotics	<mark>S + </mark>	AD(<i>i</i>)
Mertolenga	0.238(1)	0.310(1)	0.463	0.021(1)
Cachena	0.220(2)	0.215(2)	0.399	0.018(2)
Arouquesa	0.027(9)	0.034(7)	0.392	0.014(3)
Maronesa	0.136(5)	0.136(3)	0.329	0.014(4)
Marinhao	0.000	0.008(8)	0.319	0.013(5)
Barrosa	0.000	0.000	0.283	0.012(6)
Alentejana	0.000	0.000	0.261	0.011(8)
Mirandesa	0.023(8)	0.053(6)	0.190	0.009(10)
Brava de lide	0.059(6)	0.003(9)	0.174	0.006(11)

Mateus et al. (2004), Anim. Genet.

Conclusion

- Special breeds get same priority national and international
 - Different from other breeds
 - High within variation
- Changes in priority in next breeds

 Risk of priority to exotic diversity influences
- Safe set analysis
 - Tests individual breeds for added diversity
 - Added diversity assessed on strictly own merit
 - Exotics accounted for through inclusion in Safe set

Recommendations + discussion

• Think globally

 Gather data of all populations possibly influencing national genetic resources

- Construct benchmark "safe" set
- Test each national genetic resource in safe + 1 set

- Unique diversity determines priority

- Global safe set needed?
- Who conserves genetic variation in safe set?
- What to do with transboundary breeds?

