

From Animal Genetic Resources To Animal Genome Revolution

John Woolliams

1. Why are we here?

The Case For Conservation

Drivers for Change

- Livestock are a focal point for
 - » Lifting people out of poverty into sustainable livelihoods
 - » Satisfying global demands for livestock products
 - » Promoting international trade
- Production must
 - » Respond to new patterns of demand
 - » Reduce impact on environment
- Need for sustainable intensification!!!

Policy Drivers for Livestock

- Livestock are a focal point for
 - » Lifting people out of poverty into sustainable live ihoods

 - » Satisfying global demands for livestock products
 » Promoting international management
- Production must
 - » Respond to new patterns of demand
 - » Reduce impact on environment
- Need for sustainable intensification!

Breed Erosion

- Change creates new market pressures on breeds
 - » changing economics of inputs and outputs
 - » changing market demands
 - » breeds survive if 'fit for purpose' else ...
- Current markets favour breeds of high inputs with high outputs
 - » these breeds survive
- Other low-input or adapted breeds decline
- Vulnerable breeds are lost
 - » conflict, disease, flood, drought

Breed Erosion

- Change creates new market pressures on breeds
 - » changing economics of inputs and outputs
 - » changing maket demands
 - » breeds survive if 'fit for purallation is
- Current markets is appeared high inputs with high outputs
 - » these breeds survive
- Other breeds decline and become vulnerable
- Vulnerable breeds are lost
 - » conflict, disease, flood, drought

How Severe is Breed Erosion?

Risk Status	Actual %
At Risk	20
Not at Risk	35
Unknown	36
Extinct	9

How Severe is Breed Erosion?

Risk Status	Actual %
At Risk	20
Not at Risk	35
Unknown	36
Extinct	9

 More than 1 in 3 breeds of 'unknown' status!

How Severe is Breed Erosion?

Risk Status	Actual %
At Risk	20
Not at Risk	35
Unknown	36
Extinct	9

- More than 1 in 3 breeds of 'unknown' status!
- Likely status of 'unknown'
 - » 40% 'at risk'!

How Severe Is Breed Erosion?

Risk Status	Actual %	Predicted %
At Risk	20	34
Not at Risk	35	56
Unknown		
Extinct	9	10

- > 1 in 3 breeds are predicted to be 'at risk'
- ~ 1 in 10 'extinct'
- ~ 1 in 2 'secure'

Is This Loss A Problem?

No ... not with certainty and stability

- But we have no longer have certainty and stability!
- We have rapidly changing demands and markets
 - » an uncertainty, but a 'familiar' one

- But we have no longer have certainty and stability!
- We have rapidly changing demands and markets
 - We have rapidly an uncertainty, but n'familiar' one an uncertainty!

- But we have no longer have certainty and stability!
- We have rapidly changing demands and markets
 - » an uncertainty, but a 'familiar' one
- Now there is a scientific consensus:
 - » climate change is happening
 - » we should expect a rapid global warming
 - » humans have contributed and continue to do so
 - » Intergovernmental Panel on Climate Change 2007

- But we have no longer have certainty and stability!
- Scientific consensus on:
 - » there is climate change
 - » we should expec Ghangle not warming
 - » humans have contributed to do so
 - » Intergovernmental Panel on Climate Change 2007

How Much Change?

- Degree of climate change is open to debate
- Not all climate model parameters known accurately

How Much Change?

- Degree of climate change is open to debate
- Not all climate model parameters known accurately

Uncertainty!

Length of Growing Season

- expectations for Africa
- widespread reduction predicted

Thanks to CGIAR for map.

Length of Growing Season

- expectations for Africa
- widespread reduction predicted

BUT

 model assumes global cohesive response

Thanks to CGIAR for map.

Length of Growing Season

 this model assumes less cohesion

Thanks to CGIAR for map.

What Will Be Required of Livestock?

- Other implications of climate change
 - » production systems will change to meet the trends
 - » e.g. crops for bio-fuels
 - » changes in market values
 - » cause of conflict for resources

What Will Be Required of Livestock?

- Other implications of climate change
 - » production systems will change to meet the trends
 - » e.g. crops for big-fuels
 - » changes in market values rtainty!
 - » causes of conflict

What will be required of our livestock?

Meeting the Needs of our Children

 Needs of our children & children's children less likely to be met than at any previous time!

Meeting the Needs of our Children

 Needs of our children & children's children less likely to be met than at any previous time!

A lack of strategic planning!

Meeting the Needs of our Children

- Needs of our children & children's children less likely to be met than at any previous time!
- Need full range of genetic diversity to secure the needs of tomorrow
 - » a coherent risk management strategy
 - » risk is not theoretical!

Breed Variation is Vital

- Commonly held that 50% of variation is between breeds
- For fitness and adaptation maybe more
- Within breed variation is
 - » important but limited
 - » cannot be selected fast enough
- Breed variation
 - » major source for fitness & adaptation
 - » can be deployed quickly
 - » paradoxically same reason that underlies much of breed loss!

Breed Variation is Vital

- Commonly held at 50% of variation is between breeds
- For fitness and adaptation maybe more S
 Within bree Breesh is a rial to make the second of the second ortant to future
 - » limited
- » cannot be selected fast enough
 Breed variation food Security
 - » major source
 - » can be deployed quickly
 - » paradoxically same reason that underlies much of breed loss!

Summary

- Time of rapid change
- Uncertain future
 - » needs, markets, production environments, production systems
- Breed variation holds important variation
- Breed variation is being <u>selectively</u> lost
 - » towards a single 'basket' suited only for current needs
 - » high input & outputs favoured over adapted & low inputs
- Need for breed conservation strategy <u>now</u> that is
 - » comprehensive & global

2. What is the genomic revolution?

DNA Markers

- Conservation has mostly used anonymous DNA markers
 - » genetic divergence or similarities or distances
- Look back 10 years:
 - » a review of studies in 2001 had median of 5 markers per study
 - » 300 microsatellite markers on 300 animals took >1 year » personal experience!

DNA Markers

- DNA in conservation has used neutral markers
 - » genetic divergence or similarities or distances
- Look back 10 years:
 - » review of studies in 2001 had median of 5 markers per study
 - » 300 microsatellite markers on 300 animals took >1 year » personal experience!
- In 2007:
 - » 50k bovine SNP markers on 300 animals in 1 month » personal experience!

What's Changed?

- Single Nucleotide Polymorphisms (SNP)
- SNP genotyping!
 - » high throughput, high reliability, low cost/genotype
- Dense SNP chips (50k) available (200 Euro/animal)
 - » cattle ... soon to increase 2-5 fold
 - » sheep ... still restricted access
 - » pigs ... imminent, if not released
 - » chickens ... working towards 50k?
 - » horses, dogs, ..
- Human 500k chips, anticipated to increase soon

... and Sequencing & Bioinformatics

- Human genome project
 - » powered development of sequencing
 - » contributed to increased rate of SNP discovery
 - » bioinformatic annotation of genome
 - » interpretation of sequence beyond coding regions
- Livestock genome sequences available
 - » chickens, horse, cattle, pigs (imminent)
 - » others?

Sequencing & Re-Sequencing

- Sequencing is de novo
- Re-sequencing provides extended sequence information *if* a full reference sequence is available
 - » machines sequence bits of DNA
 - " 'read length' (bp, base pairs) long enough to 'uniquely' identify the location within the reference sequence
 - » requires ~25 bp or more
 - » many different bits sequenced simultaneously

Sequencing & Re-Sequencing

Yesterday

	Read Length	Bases/7h	Cost/Mb
ABI 3730	800 bp	440 kb	?

Adapted from Mardis, Trends in Genetics, 2008

Sequencing & Re-Sequencing

Yesterday ... and today

	Read Length	Bases/7h	Cost/Mb
ABI 3730	800 bp	0.4 Mb	?
454	250 bp	100 Mb	~\$80
Ilumina Solera	32-40 bp	~100 Mb	~\$6
SOLiD	35 bp	175 Mb	~\$6

Adapted from Mardis, Trends in Genetics, 2008

... & Tomorrow?

- For example, Pacific Biosciences
 - » 1000+ bp reads
 - » reads ~10⁴ times per base faster than some current technology
 - » massively parallel like today's technologies
 - » Sciencexpress, 20 November 2008/10.1126/science.1162986
 - » expected 2010
- \$1000 genome coming soon
- Whatever the system
 - » 3rd generation is close
 - » another order of magnitude advance!

Summary

Genome technology is advancing by orders of magnitude

3. Examples of Conservation Benefits from Genome Revolution

3. Examples of Conservation Benefits from Genome Revolution

Part 1: Global Perspective

Why is there no global action?

- Focus on short term goals
- Adapted resources largely in developing countries
 - » especially for global warming threats
- Hard to measure the adapted phenotypes
 - » geography & nature of adaptation e.g. drought survival
- Difficult for developed countries to value for their own self-interest
 - » e.g. how likely is UK to develop and select an adapted composite to replace the Holstein
 - » conservation becomes 'philanthropic'

Why is there no global action?

- If knew genes, targeted gene introgression may provide a more efficient and attractive option
- BUT what gene?

Why is there no global action?

- If knew genes, targeted gene introgression may provide a more efficient and attractive option
- BUT what gene?
- Could consider using selective sweeps for identifying such genes

 What happens when a new mutation enters a population and has a selective advantage?

Selection **increases** frequency of mutation

Selection **increases** frequency of mutation

Ultimately **all** copies of same ancestral mutation

Recombination among chromosomes with and without mutation

Molecular Diversity

- Called a 'signature' or 'footprint'
 - » related to 'hitchhiking'
- Longer, steeper footprint when:
 - » more rapidly fixed
 - » lower 'genomic Ne' at mutation
 - » lower population Ne & higher selection advantage
- Becomes degraded
 - » over evolutionary time by new mutations
 - » introgression from other populations

- Not every region of homozygosity will be due to a selection sweep
 - » although selective sweeps may be expected to be larger than chance
- Identifying <u>possible</u> sweeps requires very dense markers
 - » sweeps may be fractions of Mbases
 - » so require modern genome tools

Selective Sweeps in Conservation

- Examine selective sweeps among breeds
 - » breeds valued on distinctiveness of diversity pattern within the genome
 - » not for how alike or similar they are on average
- Hypothesis: for adapted breeds, some of the sweeps observed will be caused by mutations relevant to their adaptation
 - » does not require individual phenotypes for 'adaptation'

Selective Sweeps in Conservation

- BUT need to identify footprints relevant to adaptations not an anonymous footprint!
 - » correlate presence/absence of footprint to the desired adaptation
 - » preferably multiple breeds per adaptation
 - » emphasises the need to secure breed diversity
 - » use bioinformatics to explore candidate footprints
 - » sequence candidate loci in breeds +/- adaptations
 - » seek mutations correlating with adaptation within footprint

Selective Sweeps in Conservation

- Caveats
 - » do breeds share the same mutations?
 - » can enough breeds be collected for good inference?
- Potential benefit is to identify specific breeds as having specific adaptive mutations
 - » not just 'having an adapted phenotype'
 - » closing the genotype-phenotype gap in conservation

Summary

- Seeking selection footprints may help close the genotype phenotype gap
- Knowing genes will help focus conservation efforts
- More effective use of breed variation

3. Examples of Conservation Benefits from Genome Revolution

Part 1: Local Perspective

- Common problem for vulnerable breeds
- Small numbers give small Ne
 - » large random drift of allele frequencies
 - » rare allele can reach significant frequencies
 - » such an allele may be defective & harmful when in homozygous form
 - » e.g. BLAD, CVM in Holsteins

Disease appears 2+ generations <u>after</u> mutation

- Selection against allele is small
 - » homozygotes rare, heterozygote carriers normal
 - » disease unrecognised for what it is
 - » secrecy due to fear of publicity
- Defective allele disperses into population

- How to identify the 'carriers' of defect?
 - » particularly if normal phenotype
- DNA has potential to do this!

- How to identify the 'carriers' of defect?
 - » particularly if normal phenotype
- DNA has potential to do this!
- Effective method is identity-by-descent mapping
 - » or more recent extension 'homozygosity mapping'

• By comparing genomes of 'affected' individuals

'Affected' locus

Chromosome pairs from 'Affected'

Know locus must be here

- Finding a common homozygous segment has high probability of identifying segment with defect
- BUT segment can be small
 - » need to identify true homozygosity across the genome
 - » dense markers
 - » high throughput
 - » value of dense SNP technology
 - » Charlier et al. 2008. Nature Genetics 40: 449-454

Defect	CMD1	CMD2	IF	СТЅ	RL
# Scans	26	31	12	22	30
# Cases	12	7	3	8	6
Interval Mb	2.12	3.61	11.78	2.42	0.87
Mutation?	Yes	Yes	Yes	No	No

- » Few animals required to be scanned
- » Few cases
- » Bio-informatics identify candidate loci, re-sequencing identifies mutation
- » Intervals vary in length, some long!

- Find defective allele by
 - » use of dense SNPs to find homozygous segment(s)
 - » bio-informatics to locate candidate loci in segment
 - » re-sequence to find all mutations for candidate
 - » technology makes this easier and cheaper
 - » ideally, find mutation that correlates appropriately
 - » homozygote if and only if 'affected'

Caveats

- » can remove disease without finding mutation if interval small
- » very recent mutations may have long intervals
- » diseases are not always simple recessives
- » depends upon pro-active approach of breeders

Summary

 New genomic tools greatly help removal of inherited diseases from populations

- Breed variation is being <u>selectively</u> lost
 - » high input & outputs favoured over adapted & low inputs
 - » need for global breed conservation strategy <u>now</u>

- Breed variation is being <u>selectively</u> lost
 - » high input & outputs favoured over adapted & low inputs
 - » need for global breed conservation strategy <u>now</u>
- Animal genome revolution <u>is a revolution!</u>

- Breed variation is being <u>selectively</u> lost
 - » high input & outputs favoured over adapted & low inputs
 - » need for global breed conservation strategy <u>now</u>
- Animal genome revolution is a revolution!
- Genomic footprints may substantiate <u>now</u> what adapted breeds have to offer
 - » better valorisation, more efficient utilisation

- Breed variation is being <u>selectively</u> lost
 - » high input & outputs favoured over adapted & low inputs
 - » need for global breed conservation strategy <u>now</u>
- Animal genome revolution <u>is a revolution!</u>
- Genomic footprints may substantiate <u>now</u> what adapted breeds have to offer
 - » better valorisation, more efficient utilisation
- Genomics will end curse of the recessive disease

- Breed variation is being <u>selectively</u> lost
 - » high input & outputs favoured over adapted & low inputs
 - » need for global breed conservation strategy <u>now</u>
- Animal genome revolution <u>is a revolution!</u>
- Genomic footprints may substantiate <u>now</u> what adapted breeds have to offer
 - » better valorisation, more efficient utilisation
- Genomics will end curse of the recessive disease